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ABSTRACT
Musicologists and musicians often would like to search by keys in a
digital music library. In this paper, we introduce a new key-finding
algorithm that can be applied to music in both symbolic and audio
formats. The algorithm, which is based on a Hidden Markov Model
(HMM), provides two stages of key-finding output; the first one
referring to local keys and the second one to the global key.

We describe the input, the two output stages, and the parameters
of themodel. In particular, we describe two configurable parameters,
the transition probability distributions, which are based on a matrix
of neighbouring keys, and the emission probability distributions,
which make use of established key profiles.

We discuss the local key-finding capabilities of the algorithm,
presenting an example analysis of the Prelude Op. 28 No. 20 in C
minor by Chopin, showing the local key regions obtained using
different key profiles. We evaluate the global key-finding capabili-
ties of the model, using an existing dataset and six well-known key
profiles as different model parameters.

Since different key profiles will tend to err or misclassify in
different ways and across different pieces, we train an ensemble
method with the predictions from all the key profiles (6) through
our model. We show that the ensemble method achieves state-of-
the-art performance for major and overall keys, however, it still
underperforms the state-of-the-art for minor keys.
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• Information systems→Music retrieval; •Applied comput-
ing → Sound and music computing; • Computing method-
ologies→ Machine learning approaches; Markov decision processes.
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1 INTRODUCTION
Within musicology and music information retrieval (MIR), it is
often desirable to automatically extract the key of a piece of music.
Numerous key-finding algorithms have been developed over the
past decades for exactly this purpose. Typically, however, these
key-finding algorithms are domain-specific, working exclusively
on either representations of digital audio or symbolic music.1 As
the fields of computational musicology and MIR continue to grow,
it is becoming more common for numerous tasks to require datasets
that include both symbolic and audio representations of music (e.g.,
music performance analysis, automatic chord analysis, etc.). In this
scenario, applying the same algorithm to the audio and symbolic
data could prove to be convenient for accessing larger amounts of
annotated data and to simultaneously increase the performance
and consistency of the model across domains. In this paper, we
propose a novel key-finding algorithm that is capable of processing
symbolic data with an accuracy level that matches or exceeds the
state-of-the-art [2] while maintaining a similar performance in the
audio domain. Moreover, our algorithm automatically segments the
music and provides key labels for each segment—what we call the
local key, as well as an overall key estimate for the entire piece—
what we call the global key. To our knowledge our algorithm is the
first to comprehensively provide local and global keys in the same
model while delivering similar performance in the symbolic and
audio domains. Given these characteristics of the model, we believe
this is the first of its kind.

2 OVERVIEW OF THE MODEL
In this section we introduce the design of the model: its inputs,
parameters, and outputs. For practical applications, a full imple-
mentation of the model (supporting raw MIDI and WAV files) is
made available.2

2.1 Inputs
Our model requires a sequence of pitch classes as input (i.e., the
letter-name or chroma representation of each note). In order to
automatically obtain the sequence in both domains, the model pre-
processes symbolic and audio inputs in a fairly different way.

2.1.1 Symbolic. For symbolic inputs, the only pre-processing re-
quired is the removal of all information accompanying each note
aside from its pitch class. Our model is implemented to accept MIDI
files, however, working with other symbolic music representations
(e.g., Humdrum, Lilypond, MEI, and MusicXML) is trivial if an
external parser for that format is available.

1For a brief overview of recent symbolic approaches, see [13]; for an overview of audio
approaches—including common methods and limitations—see [7].
2https://github.com/napulen/justkeydding
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2.1.2 Audio. For audio inputs, an external algorithm is used to
compute chromagram3 features of the raw audio. The individual
chroma bins (12) in each chromagram-frame are converted into
discrete pitch-class events when their energy surpasses a threshold
value. The chromagram algorithm used in the implementation of
the model is the NNLS Chroma [9] with its default parameters.

After the corresponding pre-processing steps, the pitch-class
sequences are ready to be consumed by the model. When several
notes sound simultaneously, a bottom-to-top approach is preferred
for dispatching the notes into the algorithm. Figure 1 shows an
example of a pitch-class sequence.4

Figure 1: Pitch-class sequence from the first measure of
Chopin’s Op. 28 No. 20

Although additional information beyond pitch class (e.g., pitch
spelling, pitch height, time signature, duration, and measures) is
potentially available in symbolic music files, we omit this infor-
mation from the model, by design, in order to facilitate the use of
the model on audio data, where this information is not easily ob-
tainable (e.g., polyphonic pitch estimation, pitch spelling, duration,
etc.). Consequently, this also simplifies the parameters of the model.

2.2 Parameters
Our model is based on a Hidden Markov Model (HMM) [14]. An
HMM typically consists of observation symbols, states, a transition
probability distribution, an emission probability distribution, and an
initial state distribution. We describe each of these parameters.

2.2.1 Observation symbols. Each observation is one of the twelve
pitch classes, denoted by the numbers [0-11]. Every enharmonic
spelling of the same pitch class is collapsed into the same number.

2.2.2 States. Each of the 24 musical keys, denoted by the num-
bers [0-23]. Similarly, all enharmonic spellings are collapsed. The
numbers [0-11] denote major keys and [12-23] minor keys.

2.2.3 Initial state. We assume a uniform distribution across all
possible starting keys. That is, starting in a given key is just as
likely as starting in any other key.

2.2.4 Transition probability distribution. In general, this parameter
determines how likely it is to change from one state to another.
Here, where the states represent the musical keys, the transition
probability distribution determines how likely it is to change from
one key to another.
3A chromagram is a reduction of all the harmonic content of an audio signal into 12
(or more) bins or classes. It is typically computed over small time windows, similar to
a spectrogram.
4Although the example utilizes conventional music notation (including accidentals) to
denote the pitch classes (e.g., E♭), in practice, the model encodes pitch classes with
numbers from 0 to 11 instead.

Table 1: Matrix of neighbouring keys. Column-wise, the
keys follow the circle-of-fifths. Row-wise, each key is sur-
rounded by its relative and parallel major (or minor) keys

A♯ a♯ C♯ c♯ E e G g B♭
D♯ d♯ F♯ f♯ A a C c E♭
G♯ g♯ B b D d F f A♭
C♯ c♯ E e G g B♭ b♭ D♭
F♯ f♯ A a C c E♭ e♭ G♭
B b D d F f A♭ a♭ C♭
E e G g B♭ b♭ D♭ d♭ F♭
A a C c E♭ e♭ G♭ g♭ B♭♭
D d F f A♭ a♭ C♭ c♭ E♭♭

Assuming that we know the current key in an excerpt of tonal
music, we also know that if that the key changes, some keys (e.g.,
dominant or relative major/minor) are more likely to be the new key
than others. Using the theoretical concept of distance between keys,
these transitions of key can be formalized as probabilities. Thus,
we define the notion of key distance using a table of neighbouring
keys, shown in Table 1, and originally introduced by Weber [19].

Taking any one key as the current key and measuring the eu-
clidean distance to the other keys in thematrix permits the grouping
of the 24 keys into 9 groups. Each group is sequentially further away
from the current key, and all of the keys within a group are located
at the same distance from the current key. Table 2 shows an example
of the groups obtained if the current key is C Major.5

Table 2: Key distance groups with respect to C Major

Group 1 2 3 4 5 6 7 8 9
C F d D E D♭ e♭ c♯ F♯

Keys G e E♭ A♭ B f♯ e♭
a f A b♭
c g B♭ b

The transition probability distributions are computed by assign-
ing a probability to every key according to these 9 groups of key
distance with respect to the current key. The decrease in probability
of key distance between the current key group and a given subse-
quent key group is controlled by a ratio parameter. For example, a
ratio of 10 means that any key in that subsequent group is 10 times
less likely than any key in the current group. Figure 2 shows the
distributions obtained for 3 different ratios when the current key
is C Major. The distributions for other keys are obtained through
transposition.6

2.2.5 Emission probability distributions. In general, the emission
probability distribution parameter determines how likely it is that
one state emits an observation symbol. Here, where the observation

5Notice that all the enharmonic keys have been collapsed into a single spelling and,
when the distance between two enharmonics differs (e.g., d (C, D♭) , d (C, C♯)), the
smallest distance has been used.
6Throughout this paper, we assume that pitch classes and keys are transpositionally
equivalent, although we know that research does not support that claim [13]. Further
exploration is still needed to address these issues in future versions of the model.
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Figure 2: Probability of transitioning to any key if the cur-
rent key is C Major

symbols represent pitch classes, the emission probability distribution
determines how likely it is that a key emits a particular pitch class.

Key profiles have been used in several key-finding algorithms in
the past. We consider them to be adequate for defining the emis-
sion probability distribution of the HMM. We collected and normal-
ized six well-known key profiles to be used as emission probability
distributions: Krumhansl-Kessler (KK) [8], Aarden-Essen (AE) [1],
Bellman-Budge (BB) [3], Temperley (T) [16], Sapp (S) [15], and
Albrecht-Shanahan (AS) [2]. Figure 3 shows the emission probabil-
ity of each pitch class if the keys were CMajor or CMinor. Similarly,
the distributions of other keys are obtained through transposition.6

Figure 3: Probabilities of emitting a pitch class in C Major
(top) and C Minor (bottom), obtained from six key profiles

2.3 Outputs
We consider it advantageous to divide the output of the model into
two stages, as some users might be more interested in local keys
(e.g., those studying roman numeral analysis) while others may
only be interested in the global key (e.g., for metadata labeling).

2.3.1 Stage 1: Local key segmentation. In this stage, a key is as-
signed to each pitch class of the input sequence.

The process for assigning the keys depends entirely on the output
of the viterbi algorithm [5] given the parameters of the model and
the pitch-class input sequence as a series of observations. In general
terms, the model favors a key that can explain all the pitch classes

in a sequence as diatonic degrees. When the current pitch class in a
pitch-class sequence can no longer be explained by the prevailing
key, the model will carry out a transition to another key (typically,
one that is close to the current key), thus segmenting the sequence
into local keys. A simple intuition of this stage is: for each pitch
class in a sequence of pitch classes, what is the local key that most
likely generated that pitch class?

2.3.2 Stage 2: Global key. Here, the segmentation of local keys from
the first stage is re-analyzed to find the global key. The process is
very similar to the previous stage except that now the local keys
(as opposed to pitch classes) become the new observations of the
model. A simple intuition of this stage is: given a sequence of local
keys, what is the global key that best explains the sequence?

3 EVALUATING THE MODEL
We describe the dataset utilized, discuss the local key-finding ca-
pabilities of the model, and evaluate its global key-finding perfor-
mance by comparing it against other global key-finding algorithms
in the symbolic domain.

3.1 Dataset
We used the dataset derived from Albrecht and Shanahan [2], which
consists of 982 symbolic music files encoded in **kern format. The
files have been converted to MIDI using the Humdrum Toolkit [6]
and dispatched into the implementation of our HMM model.

3.2 Local keys in Prelude Op. 28 No. 20
We selected a short piece with a relatively simple structure, the
Prelude Op. 28 No. 20 in C minor by Chopin (part of the Albrecht-
Shanahan dataset), to illustrate the local key segmentation output of
our algorithm. In this case, the segmentation is affected exclusively
by the selection of the key profile. Figure 4 shows the segmentation
of the model for this musical piece, according to which of the six
key profiles was used as the emission probability distribution. The
x-axis represents each individual note in the piece.

Figure 4: Output of the local key segmentation in Prelude
Op.28 No.20 in C minor by Frédéric Chopin. Measures are
delimited by dashed vertical lines.

Most of the key profiles output a similar local key segmentation,
however, it is visually evident that the Krumhansl-Kessler (KK) key
profile provides a segmentation with fewer (and therefore longer)
local keys. An inspection of Figure 3 shows that the probability
distribution in the KK key profile assigns higher values to non-
diatonic pitch classes in both major and minor modes, compared to
the other key profiles. Thus, relying on the KK profile has an obvious
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effect in the segmentation of the piece, such that the “tolerance”
for non-diatonic tones is higher, and therefore they tend to be
explained by the same local key. A contrasting example to the KK
profile is the Sapp (S) key profile. An inspection of Figure 3 shows
that the probability from S assigns a lower value (in fact, zero) to
the non-diatonic pitch classes. In the local key segmentations, this
coincides with more (and therefore shorter) local keys, which are
particularly visible in Figure 4 during measures 3, 6, and 10.

Further work is still needed in order to provide a quantitative
evaluation of the local keys provided by our model.

3.3 Global key-finding results
In the evaluation of the global key-finding capabilities of the model,
we followed a similar methodology to Albrecht and Shanahan. We
divided the dataset in two parts, 490 files reserved for training
and 492 reserved for testing. Since a specific “split” of the training
and testing data may provide significantly different results than
another one, it is a common practice to perform cross-validation
experiments with different sets of training and testing data. In our
evaluation, we cross-validated our results by running our model
over 20 random permutations of the dataset, splitting it in 490
files for training and 492 for testing every time. For this, we used
the ShuffleSplit class in scikit-learn [11]. We report the average
accuracy obtained throughout the experiment.

3.3.1 Individual key profiles. The results of the individual key pro-
files in the HMM can be seen in the middle group of rows in Table 3.
For all of these evaluations, the model used a key distance ratio of
15. Therefore, the difference in the results corresponds exclusively
with the key profile used as emission probability distribution.

Table 3: AccuracyRatings forKey-FindingMethods inMajor,
Minor, and Overall pieces

Algorithm Major Minor Overall

Krumhansl-Schmuckler 69.0% 83.2% 74.2%
Temperley (with KS algorithm) 96.8% 74.3% 88.6%
Bellman-Budge 94.9% 84.4% 91.1%
Aarden-Essen 90.7% 93.3% 90.4%
Sapp 92.3% 87.2% 90.4%
Albrecht-Shanahan1 92.7% 85.5% 90.0%
Albrecht-Shanahan2 89.1% 95.0% 91.3%

justkeydding (KK) 79.5% 76.3% 78.4%
justkeydding (AE) 86.1% 89.9% 87.5%
justkeydding (S) 89.2% 87.4% 88.5%
justkeydding (BB) 94.3% 81.1% 89.5%
justkeydding (T) 94.2% 83.3% 90.2%
justkeydding (AS) 93.1% 88.1% 91.3%

justkeydding (meta-classifier) 96.1% 91.5% 94.4%

3.3.2 Ensemble method. We observed that different key profiles
will tend to predict or misclassify in different ways and across
different pieces, motivating the use of those predictions as the
input features of a meta-classifier. For this, we used an additional
model, a Logistic Regression classifier, where the predictions from

each HMM classifier are used as input features. In addition to the
six HMMs derived from the different key profiles, we also used
three ratios (5, 10, and 15) of distance between groups of keys. In
total, for every training example, the meta-classifier receives 432
input features (6 key profiles * 3 ratios of key distance * probability
assigned to 24 keys).7

3.3.3 Audio. In order to evaluate the robustness of the model in
the audio domain compared to the symbolic domain, the previous
experiment was repeated over a synthesized-audio version of the
same dataset. The audio was synthesized using the default sound-
font of the MuseScore 2 music notation editor. The configurations
of the model (i.e., key profiles and key distance ratios) were the
same ones as above. The results for that experiment show a similar
performance of the model, averaging 96.0% for pieces in major keys,
90.9% for pieces in minor keys, and 94.2% overall accuracy, using
audio input data. We acknowledge that these results are based on
the use of synthesized audio and may not reflect the performance
obtained in “real” recorded audio. However, an earlier version of
the HMM model was evaluated with recorded audio (from several
genres) in the MIREX key estimation task of 2018.8 This evaluated
version did not include the meta-classifier and corresponds to a
single HMM model with the Sapp (S) key profile. We thus suspect
that our current model would out-perform our previous one.

4 CONCLUSION AND FUTUREWORK
In this paper, we presented a novel key-finding algorithm that
is capable of processing data in the symbolic and audio domains.
Moreover, the algorithm provides two stages of output: local keys
and a global key. We consider that local keys could be useful in
contexts where high-granularity annotations of the current key are
required (e.g., roman numeral analysis), while digital music libraries
could index their pieces through automatic global key annotations.

Although different models for processing symbolic and audio
data simultaneously [4, 12, 17, 18], finding local keys [10], and
finding global keys [2, 7] have been proposed over the years, we
propose them within a single, comprehensive, model. We evaluate
our model, showing that it maintains or exceeds the accuracy of the
state-of-the-art global key-finding in the symbolic domain. Given
these characteristics, we consider that it is the first of its kind.

An evaluation of the model in the audio domain has been pre-
sented, showing that a similar performance is maintained in a
dataset of synthesized audio. Future work could investigate the use
of datasets of recorded audio and the performance of our model
against other global key-finding algorithms in the audio domain.

Similarly, further work is still needed in order to provide a quan-
titative evaluation of local keys, however, this would require expert
ground truth data for local keys—something that is currently scarce.
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